1,100 research outputs found

    Comment on Photothermal radiometry parametric identifiability theory for reliable and unique nondestructive coating thickness and thermophysical measurements, J. Appl. Phys. 121(9), 095101 (2017)

    Full text link
    A recent paper [X. Guo, A. Mandelis, J. Tolev and K. Tang, J. Appl. Phys., 121, 095101 (2017)] intends to demonstrate that from the photothermal radiometry signal obtained on a coated opaque sample in 1D transfer, one should be able to identify separately the following three parameters of the coating: thermal diffusivity, thermal conductivity and thickness. In this comment, it is shown that the three parameters are correlated in the considered experimental arrangement, the identifiability criterion is in error and the thickness inferred therefrom is not trustable.Comment: 3 page

    A Labelling Scheme for Higher Dimensional Simplex Equations

    Get PDF
    We present a succinct way of obtaining all possible higher dimensional generalization of Quantum Yang-Baxter Equation (QYBE). Using the scheme, we could generate the two popular three-simplex equations, namely: Zamolodchikov's tetrahedron equation (ZTE) and Frenkel and Moore equation (FME).Comment: To appear as a Letter to the Editor in J. Phys. A:Math and Ge

    Permutation-invariant distance between atomic configurations

    Full text link
    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e. fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the Root Mean Square Distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e. their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity

    Petrology of Matthew and Hunter volcanoes, South New Hebrides island arc (Southwest Pacific)

    Get PDF
    Matthew and Hunter, the two southernmost active volcanoes of the New Hebrides island arc (southwest Pacific) differ markedly from the other (mainly tholeitic) Quaternary volcanoes of this arc. Geodynamically related to the New Hebrides subduction zone, they also lie close to the southern limb of the active expanding ridge of the North Fiji Basin. Both volcanoes are made up of acid, medium-K, calcalkaline orogenic andesites, containing a variety of inclusions (pyroxene- and gabbroic cumulates, as well as doleritic cognate inclusions). This paper presents the first systematic petrographic and chemical study of these volcanics and their inclusions. Trace-element geochemistry and rare-earth element modelling suggest that the two volcanoes developed from successive batches of similar parental magmas, originating from limited partial fusion of garnet peridotite in the mantle wedge. Various degrees of fractional crystallization ot these batches led to the formation of three volcanic suites: Hunter (little fractionated), West-Matthew (moderately fractionated) and East-Matthew (highly fractionated). Moreover, on Matthew island, no correlation exists between the degree of fractionation and the eruptive chronology, the youngest edifice (West-Matthew) being less evolved than the older on (East-Matthew). (Résumé d'auteur

    On classical q-deformations of integrable sigma-models

    Get PDF
    JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0A procedure is developed for constructing deformations of integrable σ-models which are themselves classically integrable. When applied to the principal chiral model on any compact Lie group F, one recovers the Yang-Baxter σ-model introduced a few years ago by C. Klimčík. In the case of the symmetric space σ-model on F/G we obtain a new one-parameter family of integrable σ-models. The actions of these models correspond to a deformation of the target space geometry and include a torsion term. An interesting feature of the construction is the q-deformation of the symmetry corresponding to left multiplication in the original models, which becomes replaced by a classical q-deformed Poisson-Hopf algebra. Another noteworthy aspect of the deformation in the coset σ-model case is that it interpolates between a compact and a non-compact symmetric space. This is exemplified in the case of the SU(2)/U(1) coset σ-model which interpolates all the way to the SU(1, 1)/U(1) coset σ-modelPeer reviewedFinal Published versio

    Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France

    Get PDF
    Every year, more than 50,000 wildland fires affect about 500,000 ha of vegetation in southern European countries, particularly in wildland-urban interfaces (WUI). This paper presents a method to characterize and map WUIs at large scales and over large areas for wildland fire prevention in the South of France. Based on the combination of four types of building configuration and three classes of vegetation structure, 12 interface types were classified. Through spatial analysis, fire ignition density and burned area ratio were linked with the different types of WUI. Among WUI types, isolated WUIs with the lowest housing density represent the highest level of fire risk

    Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media

    Full text link
    The behaviour of two dimensional binary and ternary amphiphilic fluids under flow conditions is investigated using a hydrodynamic lattice gas model. After the validation of the model in simple cases (Poiseuille flow, Darcy's law for single component fluids), attention is focussed on the properties of binary immiscible fluids in porous media. An extension of Darcy's law which explicitly admits a viscous coupling between the fluids is verified, and evidence of capillary effects are described. The influence of a third component, namely surfactant, is studied in the same context. Invasion simulations have also been performed. The effect of the applied force on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition produces new phenomena, including emulsification and micellisation. At very low fluid forcing levels, this leads to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long times (beyond the water percolation threshold), the concentration of remaining oil within the porous medium is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of surfactant in the invading phase during drainage simulations slows down the invasion process -- the invading fluid takes a more tortuous path to invade the porous medium -- and reduces the oil recovery (the residual oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press

    Computation of dynamical correlation functions of Heisenberg chains in a field

    Full text link
    We compute the momentum- and frequency-dependent longitudinal spin structure factor for the one-dimensional spin-1/2 XXZXXZ Heisenberg spin chain in a magnetic field, using exact determinant representations for form factors on the lattice. Multiparticle contributions are computed numerically throughout the Brillouin zone, yielding saturation of the sum rule to high precision.Comment: 4 pages, 14 figure
    corecore